
Model-based Programming
as Estimating, Planning and

Executing based on Hidden State

Brian C. Williams
Artificial Intelligence and Space Systems Labs

Massachusetts Institute of Technology

IS Program Review

September 5th, 2002

Objective: Support programmers
with embedded languages that
avoid these mistakes, by
reasoning about hidden state
automatically.

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors
latched by software monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to
determine touch down.

• Latched noise spike read as
touchdown.

• Engine shutdown at ~50ft.

Reactive Model-based Programming

Why Model-based Programming?

Programmers often make
commonsense mistakes when
reasoning about hidden state.

Objective

Develop model-based embedded programming languages
that think from commonsense models in order to robustly
estimate, plan, schedule, command, monitor,
diagnose and repair collections of robotic explorers.

• Reactive Model-based Programming Language

• Titan Model-based Executive

DEMONSTRATION:

Spheres on ISS (DARPA Funded)
•Robust Station keeping (SIM)
•Robust Docking (MSR)Mars 09 Mobile Science Lab

At the Engineering level, Model-based Programs
Interact Directly with State

Embedded programs interact with
plant sensors and actuators:

• Read sensors

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Programmers must map
between states and
sensors/actuators.

Model-based programs
interact with plant state:

• Read state

• Write state

Model-based
Embedded Program

S
Plant

Model-based executives map
automatically between states and
sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Model-based Executives should

automate ALL reasoning about system interactions.

Engineering
level:

•Command
confirmation

•Diagnosis

•Commanding

•Configuration

•Repair

System level:

• Generation of
contingencies.

• Scheduling

System Model

CommandsObservations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Track
likely
states

Find
best

target

Plan
reactively

System Level: Control Sequencer

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal and

resource constraints

Engineering Level: Deductive Controller

Generate target goal states
conditioned on state estimates

Orbital Insertion Example

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

Turn camera off and engine on

Control Program

Control program specifies
state trajectories:

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

OrbitInsert()::

(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))

(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Given observations…
and command history…
executive infers “hidden
state”

Hidden State
• States like (EngineA = Standby) are not DIRECTLY

observable or controllable…

(thrust = zero) AND (power_in = nominal)

last command issued = “standbylast command issued = “standby--cmdcmd””

���� (EngineA = Standby)

Given state goals executive
infers “commands” [Turn on DriverA]; [Open ValveA]

• Thinking in terms of “hidden states” abstracts away
complexity of robustly observing and controlling state.

• Model-based executive raises assurance of software by
correctly inferring and controlling states.

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0

Synthesize Actions from
Models of Complex Behavior

• Complex, discrete and qualitative behaviors

• Anomalies and uncertainty

• Physical interactions

• Timing

• modeled through concurrency, hierarchy and non-determinism.

• modeled by probabilistic transitions

• modeled by discrete and continuous constraints

• modeled by simple temporal networks

Probabilistic Hierarchical Constraint Automata:

Intended
Behavior
of System

Possible
Behaviors
of Components

Example: The model-based program sets the state to thrusting, and
the deductive controller

Determines that valves
on the backup engine

will achieve thrust, and
plans needed actions.

Deduces that a valve
failed - stuck closed

Plans actions
to open

six valves

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy

Control
Sequencer

Model

Temporal plannerTemporal planner

Deductive ControllerDeductive Controller

Command

goals

Observations Flight System Control

RT Control Layer

State

Thrust
Goals

Attitude Point(a)

Engine OffOff

Delta_V(direction=b, magnitude=200)

Power

ModelModel--based Executive based Executive
Reasons from Plant ModelReasons from Plant Model

State Estimates

Mode
Reconfiguration

Mode
Estimation

State Goals

ŝ

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

Fire backup
engine

Recent Publications

Model-based Programming:
• B. C. Williams and M. Ingham, “Model-based

Programming: Controlling Embedded Systems by
Reasoning about Hidden State," to appear
International Conference on Constraint
Programming, September 2002.

MBP & Titan Executive 1. 0:
• B. C. Williams, M. Ingham, S. Chung and P. Elliott,

“Model-based Programming of Intelligent
Embedded Systems and Robotic Explorers," to
appear Special Issue on Embedded Software, IEEE
Proceedings.

Results: Analysis of Livingstone
Deductive Algorithms

Issues:

• Would not explore complete diagnosis space.

• Would not maintain proper ranking of diagnoses
in terms of posterior probability.

• Would not rule out all inconsistent diagnoses.

OPSAT:

• Extract Deductive core for solving Optimal Constraint
Satisfaction problems.

• Extend to achieve optimality, completeness, and
correctness.

• Empirically validate on randomized algorithms and extend

OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options:
•

Test Against Constraints:
•

OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options:
• Conflicts generalize test to leap over leading infeasible options

Test Against Constraints:
• Directed towards satisfying most constraints

Increasing
Cost

Feasible

Infeasible

A*

Increasing
Cost

Feasible

Infeasible

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A*

• Feasible regions are described
by the implicants of the conflicts
(Kernel Assignments)

•Want kernel assignment
containing the best cost state.

U(A1), U(A2),
U(M1), U(M3)

U(A1), U(M1) , U(M2)

• Kernel assignments are generated
from conflicts by minimal set covering.

Conflicts

Conflict-directed A*:
• To find best kernel, expand tree in best first order,

exploiting preferential independence, preserve systematicity
• Explore subspace of kernel in best first order.
•Test with Incremental Sat algorithm (DPLL + TMS)

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• View minimal set covering as tree
search.

U(A1), U(A2),
U(M1), U(M3)

U(A1), U(M1) , U(M2)

How do we unify Generate and Test phases?

Clauses

Clause-directed A*:
• Search in best first order, exploiting preferential independence.
• All else equal, direct towards assignments covering most clauses.
• Perform incremental unit propagation after each assignment.
� Produces best cost prime implicants.

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• Treat all clauses as conflicts.
• Direct towards covering clauses.

Recent Publications:
Optimal CSPs & OpSat

Using conflicts to optimally direct the selection of
decision variables.

• Williams, B.C. and R. Ragno, “Conflict-directed A*
and its Role in Model-based Embedded Systems,"
to appear Special Issue on Theory and Applications
of Satisfiability Testing, Journal of Discrete Applied
Math.

Unifying Generation and SAT Testing through
Clause-direction

• Ragno, R. “Clause-directed A*," Master’s Thesis,
MIT EECS

Demonstration 1: Interferometer Testbed

Objective: Successful ground test-bed demonstration:
1st step toward broader acceptance.

SIM TPF CommandsObservations

Track
likely
states

Find
best

target

Plan
reactively

Deductive Controller
(lisp Livingstone)

Collaborators: JPL Caltech

Publication:
• Ingham, M., B. Williams, T. Lockhart, A. Oyake, M. Clark, A.

Aljabri, “Autonomous Sequencing and Model-based Fault Protection
for Space Interferometry,” International Symposium on AI and
Robotics in Space, June 2001.

Terminated: Spring 01

Demonstration 2 &3:
Messenger On & Off Board

Objective: Demonstrate approach to Mode Estimation
that is palatable to conservative missions.

ModesObservations

Compile
Model

Activate
Conflicts

Generate
Diagnoses

Onboard Compile Mode
Estimation(MiniME)

Collaborators: JHU APL Dave Watson, Mike Pekala…
Publication: Van Eepoel, J., B. Williams,S. Chung, “Improving Model-based

Mode Estimation Through Offline Compiling,” International Symposium
on AI and Robotics in Space, June 2001.

Status:

• Funding delayed to 8th month, FY 01,

• 1 month for Minime to reach Messenger PDR-> too late.

• Shifted to Titan ground station.

• Funding terminated after 4 months, still an excellent opportunity!

Messenger
Mission to
Mercury System Model

CommandsObservations

Control Program

State goalsState estimates

Track
likely
states

Find
best

target

Plan
reactively

Control Sequencer

� Executes
concurrently
� Preempts
� Asserts and
queries states

Deductive Controller

Titan

Demonstration 4: TechSat 21 onboard
Model-based Execution

Objective: Model-based Programming on board, operate full mission

Collaborators:

• MIT Space Systems Lab (Miller, Sedgwick, How, Fesq),

• MIT AI Lab (Shrobe, Ladagga, Sullivan, Roberston),

• JPL AIG (Chien, Rabideau, Sherwood), AFRL

Publication:
• Chien, S., R. Sherwood, M. Burl, R. Knight, G. Rabideau, B. Engelhardt, A. Davies, P.

Zetocha, R. Wainright, P. Klupar, P. Cappelaere, D. Surka, B.C. Williams, R. Greeley, V.
Baker and J. Doan, “The Techsat-21 Autonomous Sciencecraft Constellation,” Int. Symp.
on AI, Robotics and Automation in Space, St-Hubert, Canada, June 2001.

Status:

• Started FY 99 under AFRL funding, augmented by DARPA Mobies

• Replaced by L2, January, 2002.

System Model

CommandsObservations

Control Program

State goalsState estimates

Track
likely
states

Find
best

target

Plan
reactively

Control Sequencer

� Executes
concurrently
� Preempts
� Asserts and
queries states

Deductive Controller

Titan

TechSat 21
Air force
Radar
Interferometer

Demonstration 5 & 6: ST –7 Concept Study
Model-based Programming at
Engineering & System Levels

Objective: Demonstrate Model-based Programming on board at
Engineering and Systems Levels, operate full mission

Collaborators:

• JPL (Beam Group) AIG (Barret)

• JHU APL (Watson, Pekala)

• NASA Ames (Muscettola, Morris)

Publication:
• Fesq, L., et al. “Model-based Programming for Robotic Spacecraft” to appear, World Space

Congress, 2002.

Status:

• Completed integrated demo of System level (Kirk) and Eng. Level (Titan)

• Awaiting Mission level autonomy and IDEA for full integrated demo.

NASA ST7
Mission
Phase A

System Model

CommandsObservations

Control
Program

State goalsState estimates

Track
likely
states

Find
best

target

Plan
reactively

Kirk System Level

Schedule events dynamically
Schedule events dynamically

Search for optimal concurrent
execution among contingencies

Search for optimal concurrent
execution among contingencies

PlansPlan
Failures

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal and

resource constraints

Titan Engineering Level

ID
E

A

Europa
Mission-Level

Directions: Spheres on ISS

• Working to demonstrate Titan in flight on docking
maneuvers for MIT Sphere’s Spacecraft within Intl. Space
Station.

• Titan must manage mission in light of failures.

Funded by DARPA Orbital Express

Control Sequencer

System Model

CommandsObservations

Control Program

Plant

State goalsState estimates

Mode
Estimation

Mode
Reconfiguration

� Executes concurrently
� Preempts
� Asserts and queries states

Directions: Expanding Model-based Programming
to the System-level: Titan + Kirk

Control Sequencer

System Model

CommandsObservations

Control Program

Plant

State goalsState estimates

Mode
Estimation

Mode
Reconfiguration

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal

constraints

Directions: Expanding Model-based Programming
to the System-level: Titan + Kirk

Schedules events dynamicallySchedules events dynamically

Searches for optimal concurrent
execution among contingencies

Searches for optimal concurrent
execution among contingencies

PlansPlan Failures

hierarchical deterministic executionhierarchical deterministic execution

• Demonstrated for ST-7
• Integrated with LPGP on Rovers
for contingent-opportunistic planning &
execution

Heterogeneous Cooperative Robotics

• Orbiter

• Tethered
Blimp

• Mobile
Lander

• Scout
Rovers

• Sensor
Network

Indoor Testbed
• One ceiling mounted

stereo camera “the blimp”
• 3 ATRV jr.
• 1 ATRV
• Rover Sensors

– Stereo camera head
– Sonar array
– Laser range scanner
– DGPS
– Wheel encoders
– Digital compass

• Motes Sensor Networks

Rover Rover SimSim

Obstacle Detection

Map Generation

RMPL Generated Mission

Waypoint 1

Waypoint 2
Waypoint 3

Rendezvous

Obstacles

Blimp Rovers

Start Point

demo on sim

Rover tracking during execution

Issues

As a university, how can we effectively
establish a path for our technology to MSL,
and other missions, and how do we secure
funds to support this?

Model-based Execution
for Space Vehicles

SPONSOR: NASA Code-R (CETDP)

DEVELOPMENT TEAM: MIT, [APL IS]

TASK OBJECTIVES:
Develop model-based embedded programming
languages that think from commonsense models in
order to robustly command, monitor, diagnose and
repair collections of robotic explorers.

NASA RELEVANCE:
•Provides high assurance software for space
missions.
• Offers robust capabilities for command
execution and fault management.
•Speeds time for development and testing of
flight software.
•Dramatically expands ability to robustly respond
to novel situations.

TECHNICAL INNOVATIONS:
•RMPL language reads and writes hidden state
variables as if directly observable and controllable
•Titan executive “reads” state by automatically
deducing it from sensor information.
• Titan executive “sets” state by planning command
sequences that move to the specified state.

Milestones

XDevelop RMPL Compiler

XX
•Demonstrate on Distributed
Space System Testbed(s)

XXDistributed RMPL executive

XXRMPL executive

FY04FY03FY02

MIT

MIT Cooperative Rover
Testbed

System Model

CommandsObservations

Control
Program

State goalsState estimates

Track
likely
states

Find
best

target

Plan
reactively

System Level: Control
Sequencer

Schedule events dynamically
Schedule events dynamically

Search for optimal concurrent
execution among contingencies

Search for optimal concurrent
execution among contingencies

PlansPlan
Failures

� Executes concurrently
� Preempts
� Asserts and queries states
� Chooses based on reward
� Expresses temporal and

resource constraints

Engineering Level: Deductive
Controller

Model-based Programming
as Estimating, Planning and

Executing based on Hidden State

Brian C. Williams
Artificial Intelligence and Space Systems Labs

Massachusetts Institute of Technology

IS Program Review

September 5th, 2002

Objective

Create a hybrid estimation, monitoring, diagnosis and model
learning capability for physical devices that exhibit
complex discrete and continuous behaviors.

DEMONSTRATION:

JSC BIO-Plex

Mars Entry, descent & Landing

A Hybrid Discrete/Continuous System
for Health Management

600 700 800 900 1000 1100 1200 1300 1400

400

500

600

700

800

900

1000

1100

1200

time (minutes)

C
O

2

c
o
n
c
e
n
t
r
a
t
i
o
n

(
p
p
m
)

crew requests entry to
plant growth chamber

crew enters chamber

lighting fault

crew leaves
chamber

Support:
• NASA IS

NASA BIO-Plex

• Failures can manifest themselves through a coupling of a system’s continuous
dynamics and its evolution through different behavior modes
� must track over continuous state changes and discrete mode changes

• Symptoms are initially subtle; on the same scale as sensor/actuator noise
� need to extract mode estimates from subtle symptoms

Hybrid Plant Model for HME

mm11

ττ2121 ττ1212

ττ2323

ττ1313

mm33

mm22

ττ2222

ττ1111

ττ3333

Hidden Markov Models Continuous Dynamics

1
1

1

(1) ((), (), ())
:

() ((), ())

(1) ((), (), ())
:

() ((), ())

c c c c c

c c c c

c ci c c c
i

c ci c c

x k f x k u k v k
m

y k g x k v k

x k f x k u k v k
m

y k g x k v k

+ =� �
� �=� �

+ =� �
� �=� �

�

mr1 mr2 mr3

mr5mr4

0x

0x

0x

0.6x

0.6x

0.6x0 0.6x0.9

0.1 0.1
0.9

PHA

uc1

ud1

ud2
CPHA

yc2

yc1

continuous
input uci

output / observed
variable yci (cont.)

PHA component

A 1 A 2

wc1

A 3

internal
variable

discrete
input udj

Concurrent Probabilistic Hybrid Automaton (CPHA):

Hybrid Mode / State Estimation

CPHA Model

estimated mode/state x = {xd ,xc}
and its belief state h[x]sensor signals yc and

control inputs uc , ud

Kalman
Filter Bank

yc(k)

uc(k-1)

Hybrid
Mode

Estimator
xci(k)

Pi(k)

^

Χk

Xk
^

Hybrid State Estimator
Maintains the set of most likely hybrid
state estimates as a set of trajectories.

Hybrid Mode Estimator:
Determines for each trajectory the possible
transitions, and specifies (dynamically) the
candidate trajectories to be tracked by the
continuous state estimators.

Hybrid Mode / State Estimation

old estimate:
Xk-1={mi,xk-1}

X+
k-1={mj,xk-1}

new estimate:
Xk={mj,xk}

1. HMM-style belief state update
determines the likelihood for
each discrete mode transition.

2. Kalman-filter-style update
determines likelihood of
continuous state evolution.

transitions at each time step is very large:
e.g. model with 10 components, each with 3 successor modes
has 310 = 59049 possible successor modes for each trajectory!

How to handle the exponential blowup?

• Generalize beam search to track the most
promising hybrid states.

• Factor state space into lower dimensional
subspaces through automated
decomposition and filter synthesis.

x(k-1) x(k)PO
...

PT1

PT2

PT3

PTl

component
2

component
1

component
3

component
l

transition expansion estimation

h(k-1) h(k)

Simulation Result

components: 6
(FR1, FR2, PIV1, PIV2, LS, PGC)
total # of modes: 9600

fringe size: 20 (400 estimation steps):
average candidates: 90.2 (< 1% !)
max. candidates: 428 (< 5 %!)
filter calculations: 242
filter executions: 36050

average runtime: ~1 s/step (PII-400, 128mb)

850 900 950 1000 1050 1100 1150 1200
0

2

4

6
PGC

time [minutes]

m
od

e
nu

m
be

r

850 900 950 1000 1050 1100 1150 1200
460

480

500

520

540

560

time [minutes]

C
O

2
co

nc
en

tr
at

io
n

[p
pm

]

850 900 950 1000 1050 1100 1150 1200
0

2

4

6
Lighting System

time [minutes]

m
od

e
nu

m
be

r

Recent Publications

Hybrid Mode Estimation:

• Hofbaur, M. W. and B.C. Williams, “Mode Estimation of
Probabilistic Hybrid Systems,” International Conference on
Hybrid Systems: Computation and Control, March, 2002.

Hybrid Expectation Maximization (preliminary):

• Melvin Henry, Simulators that Learn: Automated Estimation of
Hybrid Automata, June 2002

Hybrid Decomposition (preliminary):

• Hofbaur, M. W. and B. C. Williams, “Hybrid Diagnosis with
Unknown Behavioral Modes,” International Workshop on
Principles of Diagnosis, Austria, May 3-5 2002.

Future Directions

• Model-Learning as Hybrid EM

• Automated Decomposition of HPCA using
Dissents

• Model-based Hybrid Execution

Idea: Support programmers with
embedded languages that avoid
commonsense mistakes, by reasoning
from hardware models.

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors latched by software
monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to determine touch down.

• Latched noise spike read as touchdown.

• Engine shutdown at ~50ft.

Reactive Model-based Programming

To Address the Scope of Mars 98

Responding to the failures of Mars
Polar Lander and Mars Climate
Orbiter is a Hybrid control
problem.

Hybrid Model-based Programming
Hybrid Model-based

Programs:
• Extend to include assertions

and queries on continuous
states.

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Support:
• NASA IS

Hybrid Model-based Programming

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Plant

RMPL Hybrid Model-based Executive

SequencerControl
Program

Plant
Model

Control actionsObservations

Estimation & Control Engines

Hybrid Executives:
• Deduce continuous as well as

discrete states.
• Issue continuous as well as discrete

control actions.

Hybrid State
Estimation

Hybrid State
Reconfiguration

att/pos
goals

cont & discr
state estimates

h/w config
goals

Support:
• NASA IS

Hybrid Model-based Programming

S
Plant

Obs Cntrl

Model-based
Control Programs

Model-based
Executive

S’

Plant
Model

Plant

RMPL Hybrid Model-based Executive

SequencerControl
Program

Plant
Model

Control actionsObservations

Estimation & Control Engines

Hybrid Executives:
• Can hook into existing estimation and

control approaches.
• Should target “comfort zone” of systems

engineers.

Discrete Mode Est.

Continuous State Est.

State Estimation State Reconfiguration

Discrete Controller

Continuous Controller

att/pos
goals

cont & discr
state estimates

h/w config
goals

Mars Entry,
Descent &

Landing

Demonstration:

A Hybrid Discrete/Continuous System
for Health Management

SPONSOR: NASA Code-R (Intelligent Systems)

DEVELOPMENT TEAM: MIT, JSC

TASK OBJECTIVES:
Create a hybrid monitoring, diagnosis and model
learning capability for physical devices that exhibit
complex discrete and continuous behaviors.

NASA RELEVANCE:

Recent mission failures (e.g., Mars Climate
Orbiter and Polar Lander) highlight the need
for monitoring capabilities that detect subtle
symptoms, and simulators that can be quickly
tailored to a mission. Our approach enables:

• predictive diagnosis and the detection of
incipient failures that are hidden within noise.

• generation of estimators that track system
state across changes in system modes.

• prototyping of simulators that acquire their
physical models automatically.

TECHNICAL INNOVATIONS:
Dynamics are modeled as hybrid probabilistic
concurrent automata (HPCA).
Monitoring, diagnosis, state tracking and model
learning framed as elements of an Expectation
Maximization algorithm for HPCA.

Milestones

XHybrid Mode Estimation

X•Decomposition algorithms

XXDemonstration on Bioplex
and Mars EDL

XLearning as Hybrid
Expectation Maximization

FY04
FY0
3

FY0
2

MIT

mm11

ττ2121 ττ1212

ττ2323

ττ1313

mm33

mm22

ττ2222

ττ1111

ττ3333

Hidden Markov Models Continuous Dynamics
1

1
1

(1) ((), (), ())
:

() ((), ())

(1) ((), (), ())
:

() ((), ())

c c c c c

c c c c

c ci c c c
i

c ci c c

x k f x k u k v k
m

y k g x k v k

x k f x k u k v k
m

y k g x k v k

+ =� �
� �=� �

+ =� �
� �=� �

�

Hybrid Model

Kalman
Filter Bank

yc(k)

uc(k-1)

Mode
Estimation

xci(k)

Pi(k)

^

Χk

Xk
^

Mars Entry,
Descent & Landing

